FGF2 Attenuates Neural Cell Death via Suppressing Autophagy after Rat Mild Traumatic Brain Injury

نویسندگان

  • Chonghui Tang
  • Yudong Shan
  • Yilan Hu
  • Zhanjian Fang
  • Yun Tong
  • Mengdan Chen
  • Xiaojie Wei
  • Xiaojun Fu
  • Xinlong Xu
چکیده

Traumatic brain injury (TBI) can lead to physical and cognitive deficits, which are caused by the secondary injury process. Effective pharmacotherapies for TBI patients are still lacking. Fibroblast growth factor-2 (FGF2) is an important neurotrophic factor that can stimulate neurogenesis and angiogenesis and has been shown to have neuroprotective effects after brain insults. Previous studies indicated that FGF2's neuroprotective effects might be related to its function of regulating autophagy. The present study investigated FGF2's beneficial effects in the early stage of rat mild TBI and the underlying mechanisms. One hundred and forty-four rats were used for creating controlled cortical impact (CCI) models to simulate the pathological damage after TBI. Our results indicated that pretreatment of FGF2 played a neuroprotective role in the early stage of rat mild TBI through alleviating brain edema, reducing neurological deficits, preventing tissue loss, and increasing the number of surviving neurons in injured cortex and the ipsilateral hippocampus. FGF2 could also protect cells from various forms of death such as apoptosis or necrosis through inhibition of autophagy. Finally, autophagy activator rapamycin could abolish the protective effects of FGF2. This study extended our understanding of FGF2's neuroprotective effects and shed lights on the pharmacological therapy after TBI.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

O13: Human Neural Stem/Progenitor Cells Derived from Epileptic Human Brain in A Self-Assembling Peptide Nanoscaffold Attenuates Neuroinlammation in Traumatic Brain Injury in Rats

Traumatic brain injury (TBI) is a disruption in the brain functions following a head trauma. Cell therapy may provide a promising treatment for TBI. Human neural stem cells cultured in self-assembling peptide scaffolds have been proposed as a potential novel method for cell replacement treatment after TBI. In the present study, we accessed the effects of human neural stem/progenitor cells (hNS/...

متن کامل

P143: The Neuroprotective Effect of Chloroquine in Animal Model of Traumatic Brain Injury

Traumatic brain injury (TBI) is one of the leading causes of morbidity and mortality in young adults and children, and is a leading public health problem worldwide. In TBI, neurological impairment is caused by immediate brain tissue disruption (primary injury) and post‑injury cellular and molecular events (secondary injury) that exacerbate the primary neurological insult. However, the destructi...

متن کامل

Neuronal injury and death following focal mild brain injury: The role of network excitability and seizure

Objective(s): While traumatic brain injury (TBI) is a predisposing factor for development of post-traumatic epilepsy (PTE), the occurrence of seizures following brain trauma can infuriate adverse consequences of brain injury. However, the effect of seizures in epileptogenesis after mild TBI cannot yet be accurately confirmed. This study was designed to investigate the ...

متن کامل

Agmatine Attenuates Brain Edema and Apoptotic Cell Death after Traumatic Brain Injury

Traumatic brain injury (TBI) is associated with poor neurological outcome, including necrosis and brain edema. In this study, we investigated whether agmatine treatment reduces edema and apoptotic cell death after TBI. TBI was produced by cold injury to the cerebral primary motor cortex of rats. Agmatine was administered 30 min after injury and once daily until the end of the experiment. Animal...

متن کامل

Function and Mechanisms of Autophagy in Brain and Spinal Cord Trauma

SIGNIFICANCE Traumatic brain injury (TBI) and spinal cord injury (SCI) are major causes of death and long-term disability worldwide. Despite important pathophysiological differences between these disorders, in many respects, mechanisms of injury are similar. During both TBI and SCI, some cells are directly mechanically injured, but more die as a result of injury-induced biochemical changes (sec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2017  شماره 

صفحات  -

تاریخ انتشار 2017